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For Reynolds numbers Re << 1 an analytical relation is obtained for the dependence of the critical size of a 

liquid droplet on the amplitude and frequency of a sound field, surface tension, dynamic viscosity of gas 

with allowance for prehistory of motion and reattachment of mass. 

Rather  small panicles suspended in a gaseous medium are entrained by a moving medium. The degree of 

entrainment,  which is understood as the ratio of the amplitude of oscillations (or velocity) of a panicle to the 

amplitude of oscillations (or velocity) of the medium, depends substantially on the physical parameters of the 

particle. A detailed analysis of the problem of oscillatory motion of aerosol panicles in a sound field is given in a 

monograph by E. P. Mednikov [11. 

If the amplitude of the oscillatory velocity Aco is such that Re << 1, then for a sphere of constant radius we 

can write the Boussinesque equation 

4 ~ppa3W (t) = - 2.n:pga3W (t) - 6.,-t~av (t) + 1 t J W (0 dr (1) 
3 3 r o x / t - ~  

Assuming that Vg x = D + Aco sin cot, we represent Eq. (1) in the form 

W (t) - Aco 2 cos cot = - 
9~ D - Aco sin cot) - 

_ 9 v j . _ %  - Aco: cos cot) (2) 

2a r  0 c t - ,  

In [1 l, a review of the existing methods for solving (2) is given. It is shown that an approximate solution 

of the problem is often limited only by allowance for viscosity, which is determined by the Stokes equation. However, 

failure to allow for the prehistory of motion and for reattached mass manifests itself in a comparison of theoretical 

and experimental studies [1, 2 I. 

In [3 ] a priori estimates of Eq. (2) are given with allowance for the reattached mass. 

However, an exact analytical solution of (2) is possible if we assume the initial velocity of the particle to be 
t 

equal to zero. Actually, if Vp(t) = 0, then, having introduced the substitution vp(t) = f W(r)dU), we arrive at a VolterTa 
0 

integral equation of the second kind 

o r r  
(3) 
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where  

f ( r )  = a 2 D  + a2Aw sin  w t  + AoJ 2 COS w t  + 2~3 tf A w 2 c o s _ _ w z d r  . 

r 1 6 3  ~ / / - - i  ' 

2 9~ 9 4 ~ p 0  

2a 2 p + 2a p + 
__-~. 

The  t ransform of Eq. (3) is 

w (p) 
2) zp 

+ - - +  
p C Y  

= F ( : ) .  

We find the original  of v(t) corresponding to the t ransform 

F ( p )  - = A ( p )  F ( p )  w (p) = p 2 p + 28 r +,~ 

We have 

Pl + a p P + P 243 Pl 

A ( p )  - P l  - P2 P - P l  P -  Pl  P -  P l  P l  - P2 ~P - P l  

where  Pl and  P2 are  roots of the t r inomial  (t9 + a2)  2 - 4tip, which are  equal to 

P - P 2 )  ' 

= 2 ~  2 -- ct 2 v l + :~ ~ = r + r  ) 2, 

and,  finally, af ter  some t ransformat ions  for the particle velocity we have 

{ PI' rf eP2terf(pv~2t)) l l e e (vv~lt) v(,)= :y-z-7 :_ 

We analyze  the express ion 

/ (t). 

[ e P l t e r f  ( V ~ P l t )  _ eP2terf(pv~2t))  

It is easy to see that  1 / a  2 >> x for t = 0.01 sec. Therefore ,  

= K .  

v (t) = D + Am sin wt + 
Aw 2 cos oat 2[3 tf Aw2 cos wrdz  

2 + 2 . . . . .  
q--s ~ o q - : - - -T  

By subst i tut ion,  we can reduce the integral  in Eq. (6) to the expression 

(4) 

(5) 

<6) 
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Fig. 1. Differential curves of the distribution of droplets in a jet of sprayed 

liquid (d i, m): without (1) and with (2) oscillations being imposed. 

where c(x) and s(x)  are Fresnel integrals. Replacing c(x) and s(x)  by their maximum values, we obtain the droplet 

relative velocity 

aoa2 
Vre I (t) = ---y- cos oat + Aoa q 2w (cos wt + sin oat). (7) 

We find the limiting radii of droplets which are stable to oscillations. A droplet preserves its shape due to 

internal molecular forces. The internal pressure in it is p = 2o / r .  Due to the resistance force, the droplet is destroyed 

in relative motion in a gaseous medium. Assuming that the resistance force affects only half of the sphere and its 

numerical value is determined by the maximum values of overload, we find from the condition of equality of the 

forces affecting the droplet that 

2Fmax 

S 

2a  3 
- -  + - -  = 0 ,  Fma  x = m p  2 Aoa2 ~ (8)  

rc r  a 

It is easily seen that Aoa2/ct 2 >> (2fl/a2)Aoa2vr"2~ for pp >> pg, and, consequently, the critical radius of the 

droplet is 

rcr Aoa pp 

A number of assumptions made in the derivation of (9) do not hinder good agreement between the 

experimental values of the mean diameter of droplets of sprayed liquid and the characteristics of the acoustic field. 

Figure 1 presents an experimentally obtained qualitative picture of the acoustic-field effect on the 

dispertivity of liquid spraying. A strict inverse dependence of the critical maximum droplet diameter on the 

frequency of gaseous-medium oscillations is observed. 

The critical droplet radius is calculated by the formula 

rcr = 2 2 , since A m  = . 
oapp 

Thus, at a frequency of 12 kHz and a sound pressure of 154 dB (the intensity I = 0.1), the critical droplet 

diameter is 40/am (according to the experiment, 55 /am) .  In Fig. 1, the calculated region of the distribution of the 

disperse phase is hatched. 
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N O T A T I O N  

v, velocity, m/sec; W, acceleration, m/sec2; A, amplitude, m; co, angular frequency, sec-I ; /~,  dynamic 

viscosity, Pa.sec; p, density, kg/m3; or, surface tension, N/m2; I, sound intensity, dB; m, mass, kg; ~, current 

time, sec; a, droplet radius, m; v~, axial velocity of gas; D, constant component of gas velocity. 
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